SOURCE OF DRINKING WATER
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:
- **Microbial contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife
- **Inorganic contaminants**, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, and gas production, mining, or farming
- **Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential use
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- **Radioactive contaminants**, which can be naturally-occurring or be the result of oil and gas production and mining activities.

WHERE DO WE GET OUR DRINKING WATER?
The source of drinking water used by SAWS Meadowood Acres is ground water from the Edwards Aquifer. A Source Water Susceptibility Assessment for your drinking water source(s) is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of contaminants that may come into contact with your drinking water source based on human activities and natural conditions.

The information contained in the assessment allows us to focus source water protection strategies. Some of this source water assessment information is available on Texas Drinking Water Watch at http://www.tceq.state.tx.us/DWW/.

ALL DRINKING WATER MAY CONTAIN CONTAMINANTS
When drinking water meets federal standards, there may not be any health benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791).

SECONDARY CONSTITUENTS
Many constituents (such as calcium, sodium, or iron), which are found in drinking water, can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document, but they may affect the appearance and taste of your water.

HEALTH INFORMATION ABOUT LEAD
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

For more information on source water assessments and protection efforts at our systems, please contact us.
Definitions

The following tables contain scientific terms and measures, some of which may require explanation.

ALG (Action Level Goal)
- The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

MCL (Maximum Contaminant Level Goal)
- The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLD (Maximum Residual Disinfectant Level Goal)
- The level of a drinking water disinfectant below which there is no known or expected risk to health. MCLDs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MRDL (Maximum Residual Disinfectant Level)
- The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal)
- The level of a disinfectant used as an indication of microbial contamination of drinking water because testing for them is easy. While not disease-causing organisms themselves, they are often found in association with other microbes that can be carriers of disease. Coliform bacteria are more likely than many disease-causing organisms; therefore, their absence from water is a good indication that the water is microbiologically safe for human consumption.

Maximum Residual Disinfectant Level

<table>
<thead>
<tr>
<th>Disinfectant</th>
<th>Year</th>
<th>Average Level</th>
<th>Minimum Level</th>
<th>Maximum Level</th>
<th>MRDL</th>
<th>MRDLG</th>
<th>Units</th>
<th>Source of Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine residual, free</td>
<td>2011</td>
<td>1.1</td>
<td>0.3</td>
<td>2.3</td>
<td>4.0</td>
<td><4.0</td>
<td>ppm</td>
<td>Disinfectant used to control microbes</td>
</tr>
</tbody>
</table>

Coliform Bacteria

- Total Coliform: Total coliform bacteria are used as indicators of microbial contamination of drinking water because testing for them is easy. While not disease-causing organisms themselves, they are often found in association with other microbes that are capable of causing disease. Coliform bacteria are more likely than many disease-causing organisms; therefore, their absence from water is a good indication that the water is microbiologically safe for human consumption.

Lead and Copper

Lead
- Reported monthly tests found no total coliform bacteria.

Copper
- Reported monthly tests found no total coliform bacteria.

Secondary and Other Constituents Not Regulated

Aluminum
- 2006: 0.0184 ppm

Bicarbonate
- 2009: 248 ppm

Calcium
- 2006: 17.5 ppm

Chloride
- 2009: 14 ppm

Rainwater (as Ca/Mg)
- 2006: 2.43 ppm

Magnesium
- 2006: 15.4 ppm

Nickel
- 2006: 0.00255 ppm

Phosphorus
- 2009: 7.0 ppm

Sodium
- 2006: 11.2 ppm

Sulphate
- 2009: 18 ppm

Total alkalinity (as CaCO3)
- 2009: 203 ppm

Total dissolved solids
- 2009: 290 ppm

Total Trihalomethanes (TTHM)
- 2010: 1.3 ppm

Disinfectants and Disinfection By-Products

Haloacetic acids (HAAs)
- 2010: 1.3 ppm

Total Trihalomethanes (TThm)
- 2010: 1.8 ppm

Inorganic Contaminants

Barium
- 2006: 0.052 ppm

Chromium
- 2006: 3.4 ppm

Fluoride
- 2009: 0.2 ppm

Nitrate (measured as nitrogen)
- 2011: 2.12 ppm

Radioactive Contaminants

Americium
- 2006: 4.0 ppm

Cobalt
- 2006: 0.00255 ppm

Plutonium
- 2006: 13 ppm

Radon (as Rn-222)
- 2010: 0.035 ppm

Notes
- The MCL for beta particles is 4 mrem/year. EPA considers 50 pCi/L to be the level of concern for beta particles.

Lead and Copper

Copper
- 2011: 1.3 ppm

Lead
- 2011: 0 ppm

Lead and Copper

Copper
- 2011: 1.3 ppm

Lead
- 2011: 0 ppm

Secondary and Other Constituents Not Regulated

Aluminum
- 2006: 0.0184 ppm

Bicarbonate
- 2009: 248 ppm

Calcium
- 2006: 17.5 ppm

Chloride
- 2009: 14 ppm

Rainwater (as Ca/Mg)
- 2006: 2.43 ppm

Magnesium
- 2006: 15.4 ppm

Nickel
- 2006: 0.00255 ppm

Phosphorus
- 2009: 7.0 ppm

Sodium
- 2006: 11.2 ppm

Sulphate
- 2009: 18 ppm

Total alkalinity (as CaCO3)
- 2009: 203 ppm

Total dissolved solids
- 2009: 290 ppm

Total Trihalomethanes (TTHM)
- 2010: 1.3 ppm

Disinfectants and Disinfection By-Products

Haloacetic acids (HAAs)
- 2010: 1.3 ppm

Total Trihalomethanes (TThm)
- 2010: 1.8 ppm

Inorganic Contaminants

Barium
- 2006: 0.052 ppm

Chromium
- 2006: 3.4 ppm

Fluoride
- 2009: 0.2 ppm

Nitrate (measured as nitrogen)
- 2011: 2.12 ppm

Radioactive Contaminants

Americium
- 2006: 4.0 ppm

Cobalt
- 2006: 0.00255 ppm

Plutonium
- 2006: 13 ppm

Radon (as Rn-222)
- 2010: 0.035 ppm

Notes
- The MCL for beta particles is 4 mrem/year. EPA considers 50 pCi/L to be the level of concern for beta particles.