SOURCE OF DRINKING WATER
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:
- **Microbial contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife
- **Inorganic contaminants**, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming
- **Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential use
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- **Radioactive contaminants**, which can be naturally-occurring or be the result of oil and gas production and mining activities

WHERE DO WE GET OUR DRINKING WATER?
The source of drinking water used by SAWS Northeast is ground water from the Edwards Aquifer and surface water from Canyon Lake. A Source Water Suseptibility Assessment for your drinking water source(s) is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions.

The information contained in the assessment allows us to focus source water protection strategies. Some of this source water assessment information is available on Texas Drinking Water Watch at http://www.tceq.state.tx.us/DWW/.

For more information on source water assessments and protection efforts at our systems, please contact us.

ALL DRINKING WATER MAY CONTAIN CONTAMINANTS
When drinking water meets federal standards, there may not be any health benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline (800-426-4791).

SECONDARY CONSTITUENTS
Many constituents (such as calcium, sodium, or iron) which are found in drinking water, can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document, but they may affect the appearance and taste of your water.

HEALTH INFORMATION ABOUT LEAD
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from plumbing, including lead pipes and lead solder, which can be naturally-occurring or result from the presence of animals or from human activity.

Contaminants that may be present in source water include:
- **Lead in drinking water**, which may come from plumbing, including lead pipes and lead solder, and can also come from gas stations, urban storm water runoff, and septic systems.
- **Radioactive contaminants**, which can be naturally-occurring or be the result of oil and gas production and mining activities

SPECIAL NOTICE
You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immune-compromised such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider.

Additional guidelines appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at 800-426-4791.
The following tables contain scientific terms and measures, some of which may require explanation.

ALG (Action Level Goal) – The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

MCL (Maximum Contaminant Level Goal) – The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCL (Maximum Contaminant Level) – The highest level of a contaminant that is allowed in drinking water. MCLs set as close to the MCLGs as feasible using the best available treatment technology.

MRLG (Maximum Residual Disinfectant Level Goal) – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MRL (Maximum Residual Disinfectant Level) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MFL – Million fibers per liter (a measure of asbestos)

NA – Not applicable

NTU – Nephelometric Turbidity Units

pCi/L – Picocuries per liter (a measure of radioactivity)

ppm – Parts per million or milligrams per liter (mg/L)

ppb – Parts per billion or micrograms per liter (µg/L)

ppt – Parts per trillion or nanograms per liter (pg/L)

TT – Treatment technique