The information contained in the assessment allows us to focus source water protection strategies. Some of this source water assessment information is available on Texas Drinking Water Watch at http://dww.tceq.state.tx.us/DWW/.

For more information on source water assessments and protection efforts at our systems, please contact us.

HEALTH INFORMATION ABOUT LEAD
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

SPECIAL NOTICE
You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immuno-compromised such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at 800-426-4791.

2013 WATER QUALITY REPORT SAN ANTONIO WATER SYSTEM MOUNTAIN LAUREL

This report is a summary of the quality of water San Antonio Water System (SAWS) provides its customers. The analysis was made by using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in this report. We hope this information helps you become knowledgeable about what is in your drinking water.

SOURCE OF DRINKING WATER
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:
- **Microbial contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife
- **Inorganic contaminants**, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming
- **Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems
- **Radioactive contaminants**, which can be naturally-occurring or be the result of oil and gas production and mining activities

WHERE DO WE GET OUR DRINKING WATER?
The source of SAWS drinking water originated as groundwater from the Edwards, Carizo, and Trinity aquifers, and in some areas, surface water from Canyon Lake, Lake Dunlap and Medina Lake. A Source Water Susceptibility Assessment for your drinking water source(s) is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions.

HOW TO READ YOUR WATER QUALITY REPORT

The year or years tests were conducted. The concentration of a contaminant which, if exceeded, triggers treatment or other requirements SAWS must follow. The highest amount of a contaminant EPA allows in drinking water. Below this level, a contaminant has no known or expected health risks. How a contaminant ends up in SAWS drinking water.

Contaminants (2006-2012)

<table>
<thead>
<tr>
<th>Substance 1 (ppm)</th>
<th>Action Level</th>
<th>Concentration Range Found</th>
<th>Avg. Conc. Found</th>
<th>MCL</th>
<th>MCCL</th>
<th>Potential Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge from drilling wastes; discharge from metal refineries; erosion of natural deposits.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erosion of natural deposits; discharge from fertilizer and aluminum factories</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parts per billion-One gpm equals to one teaspoon in 1,302,000 gallons.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parts per million-One gpm equals to one teaspoon in 1,302 gallons.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The amount from lowest to highest of a contaminant detected in SAWS drinking water.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The average amount of a contaminant detected in SAWS drinking water.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This describes some of the ways contaminants enter drinking water; wording is provided by EPA and may or may not apply to SAWS.
2013 WATER QUALITY REPORT

Distribution Sampling for By-Products of Drinking Water Chlorination (Disinfection)

Violatile Organic Contaminants
- Synthetic Organic Contaminants including pesticides and herbicides
- Inorganic Contaminants
- Radioactive Contaminants
- Lead and Copper Results
- Disinfectant and Disinfection By-Products
- Total Halogenated Acids (HAAs)
- Total Trihalomethanes (THMs)
- Lead and Copper Results
- Regulated Contaminants
- Coliform Bacteria
- Maximum Residual Disinfectant Level
- Maximum Contaminant Level Goal

Coliform Bacteria
- Maximum Contaminant Level Goal
- Highest Number of Positive Fecal Coliform or E. Coli
- Total Number of Positive E. Coli or Fecal Coliform Samples
- Violation
- Likely Source of Contamination

Maximum Residual Disinfectant Level
- Disinfectant
- Test Year
- Average Concentration Found
- Minimum Level
- Maximum Level
- MRDL
- MRDLG
- Unit
- Likely Source of Contamination

Lead and Copper Results
- Substance
- Date Sampled
- MCLG
- Action Level (AL)
- 90th Percentile
- Number of Sites Over AL
- Units
- Violation
- Likely Source of Contamination

Regulated Contaminants
- Distribution Sampling for By-Products of Drinking Water Chlorination (Disinfection)
- Disinfectants and Disinfection By-Products
- Total Haloacetic Acids (HAAs)
- Total Trihalomethanes (THMs)

Inorganic Contaminants
- Inorganic Contaminants
- Collection Date
- Highest level Detected
- Concentration Range Found
- MCLG
- MCL
- Units
- Violation
- Likely Source of Contamination

Radioactive Contaminants
- Radium 228
- GROSS BETA
- GROSS ALPHA Particle Activity
- Collection Date
- Highest level Detected
- Concentration Range Found
- MCLG
- MCL
- Units
- Violation
- Likely Source of Contamination

Volatile Organic Contaminants
- Tetrachloroethylene
- Xylenes Total
- Collection Date
- Average Concentration Found
- Concentration Range Found
- MCLG
- MCL
- Units
- Violation
- Likely Source of Contamination

Synthetic Organic Contaminants including pesticides and herbicides
- Acetone
- Ethylbenzene
- Collection Date
- Average Concentration Found
- Concentration Range Found
- MCLG
- MCL
- Units
- Violation
- Likely Source of Contamination
2013 WATER QUALITY REPORT SAN ANTONIO WATER SYSTEM | MOUNTAIN LAUREL

Questions About Your Water Quality Report?
If you would like more information or a copy of this Water Quality Report, call:
210-233-3176

Call 24 Hours a Day to:
• Report leaks, main breaks, or sewer back-ups
• Discuss water quality concerns
210-704-SAWS (210-704-7297)

In Your Neighborhood
SAWS External Relations team extends its community outreach efforts with neighborhood leaders through homeowners associations and neighborhood meetings, schools and community gatherings. Call us for more information about how we can assist in your neighborhood.
210-233-3246

Website
Our website has the latest news and program information on water issues.
www.saws.org

En Español
Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre este informe en español, favor de llamar al 210-233-3176
Para hablar con una persona bilingüe en español.

DEFINITIONS
The following tables contain scientific terms and measures, some of which may require explanation.

ALG (Action Level Goal) – The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

AL (Action Level) – The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCLG (Maximum Contaminant Level Goal) – The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCL (Maximum Contaminant Level) – The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MRDL (Maximum Residual Disinfectant Level) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MFL – Million fibers per liter (a measure of asbestos)

NA – Not applicable

NTU – Nephelometric Turbidity Units

pCi/L – Picocuries per liter (a measure of radioactivity)

ppm – Parts per million or milligrams per liter (mg/L)

ppb – Parts per billion or micograms per liter (μg/L)

ppt – Parts per trillion or nanograms per liter (ng/L)

ppq – Parts per quadrillion or picograms per liter (pg/L)

TT – Treatment technique

Secondary Constituents

<table>
<thead>
<tr>
<th>Inorganic Constituents</th>
<th>Collection Date</th>
<th>Concentration Range Found</th>
<th>Maximum Concentration Found</th>
<th>Secondary Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Total (AS CaCO₃) mg/L</td>
<td>2011</td>
<td>213 - 213</td>
<td>213</td>
<td>NA</td>
</tr>
<tr>
<td>Calcium (ppm)</td>
<td>2011</td>
<td>69.8 - 69.8</td>
<td>69.8</td>
<td>NA</td>
</tr>
<tr>
<td>Chloride (ppm)</td>
<td>2011</td>
<td>11.1 - 11.1</td>
<td>11.1</td>
<td>250</td>
</tr>
<tr>
<td>Hardness (Calcium Magnesium) mg/L</td>
<td>2011</td>
<td>235 - 235</td>
<td>235</td>
<td>NA</td>
</tr>
<tr>
<td>Magnesium (ppm)</td>
<td>2011</td>
<td>14.8 - 14.8</td>
<td>14.8</td>
<td>NA</td>
</tr>
<tr>
<td>Nickel (ppm)</td>
<td>2011</td>
<td>0.00108 - 0.00108</td>
<td>0.00108</td>
<td>0.1</td>
</tr>
<tr>
<td>pH UNITS</td>
<td>2011</td>
<td>7.8 - 7.8</td>
<td>7.8</td>
<td>6.5 - 8.5</td>
</tr>
<tr>
<td>Sodium (ppm)</td>
<td>2011</td>
<td>8.50 - 8.51</td>
<td>8.51</td>
<td>NA</td>
</tr>
<tr>
<td>Specific Conductance (μmhos/cm)</td>
<td>2011</td>
<td>467 - 467</td>
<td>467</td>
<td>NA</td>
</tr>
<tr>
<td>Sulfate (ppm)</td>
<td>2011</td>
<td>13.5 - 13.5</td>
<td>13.5</td>
<td>300</td>
</tr>
<tr>
<td>Total dissolved solids (mg/L)</td>
<td>2011</td>
<td>274 - 274</td>
<td>274</td>
<td>500</td>
</tr>
<tr>
<td>Zinc (ppm)</td>
<td>2011</td>
<td>0.308 - 0.308</td>
<td>0.308</td>
<td>5</td>
</tr>
</tbody>
</table>

| Source: 2013 WATER QUALITY REPORT SAN ANTONIO WATER SYSTEM MOUNTAIN LAUREL |