SAWS Securing New, Future Water Resources

Just a few years ago, San Antonio was totally dependent on day-to-day pumping from the Edwards Aquifer for the city's water needs. Now, as a result of extensive planning, and funding through the Water Supply Fee, SAWS is working to secure San Antonio's water future.

The SAWS Water Resource Plan looks toward the next 50 years, taking a leadership role in the protection and development of water supplies for the San Antonio and Bexar County area. The plan is to reduce reliance from the Edwards Aquifer and to develop new and affordable water resources for the future.

In Your Neighborhood

(210) 233-3621
The SAWS Community Relations team extends its community outreach efforts with neighborhood leaders through homeowners associations and neighborhood meetings, schools and community gatherings. Call us for more information about how we can assist in your neighborhood.

Visit Us

Customer Service Locations

Downtown
2800 U.S. Hwy 281 N.
(210) 233-3621

Eastside
915 South W.W. White Rd.
(210) 233-3621

Westside
Las Palmas Mall
(210) 233-3621

Hours: 8 a.m. to 5 p.m.

If you would like more information or a copy of this Water Quality Report in Spanish, please call 704-7297.

En Español
Este reporte incluye información sobre su agua potable. Si desea más información o una copia de este reporte en español, favor llame al 704-7297.

Our Commitment to You

SAWS is genuinely committed to providing our customers with plentiful and quality drinking water. Historically, SAWS and its predecessors have been rated as a superior water system since 1936.

Your confidence in San Antonio's water supply is important to us. We hope this information will help you become more knowledgeable about your drinking water.

Where Our Water Comes From

During 2006 – the testing period reported in this document – your SAWS drinking water originated as ground water from the Trinity Aquifer.

By Phone
704-SAWS (704-7297)
Our Customer Service Lines are open 24 hours a day for:
- Customer Service help
- Reporting leaks, main breaks, or sewer back-ups
- Contacting us for water quality concerns

On The Web
www.saws.org
Our Web site has the latest news releases and program information on water issues.

In Your Neighborhood

(210) 233-3621
The SAWS Community Relations team extends its community outreach efforts with neighborhood leaders through homeowners associations and neighborhood meetings, schools and community gatherings. Call us for more information about how we can assist in your neighborhood.

Visit Us

Customer Service Locations

Downtown
2800 U.S. Hwy 281 N.
(210) 233-3621

Eastside
915 South W.W. White Rd.
(210) 233-3621

Westside
Las Palmas Mall
(210) 233-3621

Hours: 8 a.m. to 5 p.m.

If you would like more information or a copy of this Water Quality Report in Spanish, please call 704-7297.

En Español
Este reporte incluye información sobre su agua potable. Si desea más información o una copia de este reporte en español, favor llame al 704-7297.

Our Commitment to You

SAWS is genuinely committed to providing our customers with plentiful and quality drinking water. Historically, SAWS and its predecessors have been rated as a superior water system since 1936.

Your confidence in San Antonio's water supply is important to us. We hope this information will help you become more knowledgeable about your drinking water.

Where Our Water Comes From

During 2006 – the testing period reported in this document – your SAWS drinking water originated as ground water from the Trinity Aquifer.

By Phone
704-SAWS (704-7297)
Our Customer Service Lines are open 24 hours a day for:
- Customer Service help
- Reporting leaks, main breaks, or sewer back-ups
- Contacting us for water quality concerns

On The Web
www.saws.org
Our Web site has the latest news releases and program information on water issues.

In Your Neighborhood

(210) 233-3621
The SAWS Community Relations team extends its community outreach efforts with neighborhood leaders through homeowners associations and neighborhood meetings, schools and community gatherings. Call us for more information about how we can assist in your neighborhood.

Visit Us

Customer Service Locations

Downtown
2800 U.S. Hwy 281 N.
(210) 233-3621

Eastside
915 South W.W. White Rd.
(210) 233-3621

Westside
Las Palmas Mall
(210) 233-3621

Hours: 8 a.m. to 5 p.m.

If you would like more information or a copy of this Water Quality Report in Spanish, please call 704-7297.

En Español
Este reporte incluye información sobre su agua potable. Si desea más información o una copia de este reporte en español, favor llame al 704-7297.
Unregulated Contaminants (2005-2006)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Concentration Range Found</th>
<th>Avg. Conc. Found</th>
<th>MCL</th>
<th>MCLG</th>
<th>Possible Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium (ppm)</td>
<td>0.021 – 0.021</td>
<td>0.021</td>
<td>2</td>
<td>2</td>
<td>Discharge from mining, discharge from metal refiners; erosion of natural deposits.</td>
</tr>
<tr>
<td>Chromium (ppm)</td>
<td>3.3 – 3.5</td>
<td>3.5</td>
<td>100</td>
<td>100</td>
<td>Discharge from steel and pulp mills; erosion of natural deposits.</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>0.52 – 0.52</td>
<td>0.52</td>
<td>4</td>
<td>4</td>
<td>Erosion of natural deposits; discharge from fertilizer and aluminum factories.</td>
</tr>
<tr>
<td>Nitrate (ppm)</td>
<td>0.74 – 0.74</td>
<td>0.74</td>
<td>10</td>
<td>10</td>
<td>Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.</td>
</tr>
<tr>
<td>Gross beta emitters (pCi/L)</td>
<td>2.9 – 2.9</td>
<td>2.9</td>
<td>50</td>
<td>0</td>
<td>Erosion of natural deposits.</td>
</tr>
<tr>
<td>Gross alpha adjusted (pCi/L)</td>
<td>1.6 – 1.6</td>
<td>1.6</td>
<td>15</td>
<td>0</td>
<td>Erosion of natural deposits.</td>
</tr>
</tbody>
</table>

Organic Contaminants

Testing waived, not reported or none detected

Maximum Residual Disinfectant Level

<table>
<thead>
<tr>
<th>Disinfectant</th>
<th>Test Year</th>
<th>Concentration Range Found</th>
<th>Avg. Conc. Found</th>
<th>MRDL</th>
<th>MRDLG</th>
<th>Possible Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine Residual, Free (ppm)</td>
<td>2006</td>
<td>0.24 – 1.45</td>
<td>0.77</td>
<td>4</td>
<td>4</td>
<td>Disinfectant used to control microbes</td>
</tr>
</tbody>
</table>

Secondary Constituents (2005-2006)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Concentration Range</th>
<th>Average Concentration Found</th>
<th>Limit (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicarbonate (ppm)</td>
<td>264 – 264</td>
<td>264</td>
<td>NA</td>
</tr>
<tr>
<td>Calcium (ppm)</td>
<td>74.9 – 74.9</td>
<td>74.9</td>
<td>NA</td>
</tr>
<tr>
<td>Chloride (ppm)</td>
<td>12 – 12</td>
<td>12</td>
<td>500</td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>0.011 – 0.011</td>
<td>0.011</td>
<td>1</td>
</tr>
<tr>
<td>Lead (ppm)</td>
<td>0.002 – 0.002</td>
<td>0.002</td>
<td>NA</td>
</tr>
<tr>
<td>Magnesium (ppm)</td>
<td>25.2 – 25.2</td>
<td>25.2</td>
<td>NA</td>
</tr>
<tr>
<td>Nickel (ppm)</td>
<td>0.003 – 0.003</td>
<td>0.003</td>
<td>NA</td>
</tr>
<tr>
<td>pH</td>
<td>8 – 8</td>
<td>8</td>
<td>8.5 newt</td>
</tr>
<tr>
<td>Sodium (ppm)</td>
<td>9 – 9</td>
<td>9</td>
<td>NA</td>
</tr>
<tr>
<td>Sulfate (ppm)</td>
<td>29 – 29</td>
<td>29</td>
<td>500</td>
</tr>
<tr>
<td>Total Alkalinity as Calcium Carbonate (ppm)</td>
<td>266 – 266</td>
<td>266</td>
<td>NA</td>
</tr>
<tr>
<td>Total Dissolved Solids (ppm)</td>
<td>339 – 339</td>
<td>339</td>
<td>1,000</td>
</tr>
<tr>
<td>Total Hardness as Calcium/Magnesium (ppm)</td>
<td>309 – 309</td>
<td>309</td>
<td>NA</td>
</tr>
<tr>
<td>Zinc (ppm)</td>
<td>0.145 – 0.145</td>
<td>0.145</td>
<td>5</td>
</tr>
</tbody>
</table>

Distribution Sampling for By-Products of Drinking Water Chlorination (Disinfection) (2005)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Concentration Range Found</th>
<th>Average Concentration Found</th>
<th>MCL</th>
<th>Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Haloacetic Acids (HAAs) (ppb)</td>
<td>8 – 8</td>
<td>8</td>
<td>60</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Total Trihalomethanes (THMs) (ppb)</td>
<td>5.2 – 5.2</td>
<td>5.2</td>
<td>80</td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>

Lead and Copper Results (2000)

<table>
<thead>
<tr>
<th>Substance</th>
<th>90th Percentile</th>
<th>Action Level</th>
<th>Number of Sites Exceeding Action Level</th>
<th>Possible Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (ppb)</td>
<td>2.2</td>
<td>15</td>
<td>0</td>
<td>Corrosion of household plumbing</td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>0.108</td>
<td>1.3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Fecal Coliforms

Reported monthly tests found no fecal coliform bacteria.

Total Coliforms

Reported monthly tests found no coliform bacteria.

Turbidity

Not required

Water Quality Report

TCEQ has completed an assessment of SAWS source water and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detections of these contaminants can be found in this report. Contaminants that may be present in source water include:

- Microbiological contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. Cryptosporidium is an example of a microbiological contaminant affecting surface water sources.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, which may have a variety of sources such as agriculture, urban storm water runoff and residential uses.
- Organic chemical contaminants, which are by-products of industrial processes and petroleum production and also can come from gas stations, urban storm water runoff and septic systems; and
- Radioactive contaminants, which can be naturally occurring or the result of oil and gas production and mining activities.

For more information on source water assessments and protection efforts at our system, please contact us at 210-704-SAWS (704-7297).

Understanding the Charts

Action Level (AL): A concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant Level (MCL): The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Residual Disinfectant Level (MRDL): The level of disinfectant allowed in drinking water. There is convincing evidence that the addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of disinfectant allowed in drinking water. MCLGs do not reflect the benefits of the use of drinking water disinfectant below which there is no known or expected health risk. MRDLGs do not allow for a margin of safety.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

MFL: Million fibers per liter (a measure of asbestos)
Concentration Range
- 1.6 – 4
- 339 – 0
- 0.74 – 9
- 2.9 – 2.9
- 264 – 264
- 74.9 – 74.9
- 12 – 12
- 0.011 – 0.011
- 0.002 – 0.002
- 25.2 – 25.2
- 0.003 – 0.003
- 8 – 8
- 9 – 9
- 29 – 29
- 266 – 266
- 399 – 399
- 1.73 – 1.73

Disinfectant used to control microbes.
- Microbiological contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. Cryptosporidium is an example of a microbiological contaminant affecting surface water sources.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, which may have a variety of sources such as agriculture, urban storm water runoff and residential use.
- Organic chemical contaminants, which are by-products of industrial processes and petroleum production and also can come from gas stations, urban storm water runoff and septic systems; and
- Radioactive contaminants, which can be naturally occurring or the result of oil and gas production and mining activities.

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

- **Maximum Contaminant Level Goal (MCLG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- **Maximum Contaminant Level (MCL):** The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLG as feasible using the best available treatment technology.
- **Maximum Residual Disinfectant Level (MRDL):** The highest level of disinfectant allowed in drinking water. There is convincing evidence that the addition of a disinfectant is necessary for control of microbial contaminants.
- **Maximum Residual Disinfectant Level Goal (MRDLG):** The level of drinking water disinfectant required to reduce the concentration of a contaminant to below the MCL.

Treatment Technique (TTH): A required process intended to reduce the level of a contaminant in drinking water.

- **Million fibers per liter (a measure of asbestos)**
- **Fluoride (ppm):**
- **Chromium (ppb):**
- **Barium (ppm):**

Substances
- **Bismuth (ppm):** 0.021 – 0.021
- **Chromium (ppb):** 3.3 – 3.5
- **Fluoride (ppm):** 0.52 – 0.52
- **Nitrate (ppm):** 0.74 – 0.74
- **Cancer beta emitters (pCi/L):** 2.9 – 2.9
- **Gross alpha adjusted (pCi/L):** 1.6 – 1.6

Action Level
- **NA:** Not applicable
- **ND:** Not detected

- **Not regulated:** The contaminant is not currently regulated by the Environmental Protection Agency.
- **NTIV:** Nephelometric Turbidity Units
- **pCi/L:** Picocuries per liter
- **ppb:** Picograms per liter
- **ppm:** Parts per million

Use of Disinfectants
- By-product of drinking water disinfection.
- Microbiological contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. Cryptosporidium is an example of a microbiological contaminant affecting surface water sources.
- Inorganic contaminants, such as salts and metals, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. Cryptosporidium is an example of a microbiological contaminant affecting surface water sources.
- Pesticides and herbicides, which may have a variety of sources such as agriculture, urban storm water runoff and residential use.
- Organic chemical contaminants, which are by-products of industrial processes and petroleum production and also can come from gas stations, urban storm water runoff and septic systems; and
- Radioactive contaminants, which can be naturally occurring or the result of oil and gas production and mining activities.

Understanding the Charts

Lead and Copper Results (2000)
- **Lead (ppb):**
- **Copper (ppm):**

Distribution Sampling for By-Products of Drinking Water Chlorination (Disinfection) (2005)
- **Total Haloacetic Acids (HAAs) (ppb):**
- **Total Trihalomethanes (THMs) (ppb):**

Unregulated Contaminants (2005)
- **Dibenzo(a)pyrene (ppb):** 1.73 – 1.73

Your Water Quality Report

TCEQ has completed an assessment of SAWS source water and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detections of these contaminants can be found in this report.

Contaminants that may be present in source water include:

- Microbiological contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. Cryptosporidium is an example of a microbiological contaminant affecting surface water sources.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, which may have a variety of sources such as agriculture, urban storm water runoff and residential use.
- Organic chemical contaminants, which are by-products of industrial processes and petroleum production and also can come from gas stations, urban storm water runoff and septic systems; and
- Radioactive contaminants, which can be naturally occurring or the result of oil and gas production and mining activities.

For more information on source water assessments and protection efforts at our system, please contact us at 210-704-SAWS (704-7297).

Secondary Constituents (2005-2006)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Concentration Range</th>
<th>Average Concentration Found</th>
<th>Limit (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicarbonate</td>
<td>264 – 264</td>
<td>264</td>
<td>NA</td>
</tr>
<tr>
<td>Calcium</td>
<td>74.9 – 74.9</td>
<td>74.9</td>
<td>NA</td>
</tr>
<tr>
<td>Chloride</td>
<td>12 – 12</td>
<td>12</td>
<td>500</td>
</tr>
<tr>
<td>Copper</td>
<td>0.011 – 0.011</td>
<td>0.011</td>
<td>1</td>
</tr>
<tr>
<td>Lead</td>
<td>0.002 – 0.002</td>
<td>0.002</td>
<td>NA</td>
</tr>
<tr>
<td>Magnesium</td>
<td>25.2 – 25.2</td>
<td>25.2</td>
<td>NA</td>
</tr>
<tr>
<td>Nickel</td>
<td>0.003 – 0.003</td>
<td>0.003</td>
<td>NA</td>
</tr>
<tr>
<td>pH</td>
<td>8 – 8</td>
<td>8</td>
<td>8.5 units</td>
</tr>
<tr>
<td>Sodium</td>
<td>9 – 9</td>
<td>9</td>
<td>NA</td>
</tr>
<tr>
<td>Sulfate</td>
<td>29 – 29</td>
<td>29</td>
<td>500</td>
</tr>
<tr>
<td>Total Alkalinity as Calcium Carbonate</td>
<td>266 – 266</td>
<td>266</td>
<td>NA</td>
</tr>
<tr>
<td>Total Dissolved Solid</td>
<td>359 – 359</td>
<td>359</td>
<td>1,000</td>
</tr>
<tr>
<td>Total hardness as Calcium/Magnesium</td>
<td>309 – 309</td>
<td>309</td>
<td>NA</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.145 – 0.145</td>
<td>0.145</td>
<td>5</td>
</tr>
</tbody>
</table>

Turbidity

- **Not required**

Lead and Copper Results

- **What Are Coliforms?**
 - Total coliform bacteria are used as indicators of microbial contamination of drinking water because testing for them is easy. While not disease-causing organisms themselves, they are often found in association with other microbes that are capable of causing disease. Coliform bacteria are more hardy than many disease-causing organisms; therefore, their absence from water is a good indication that the water is microbiologically safe for human consumption.
 - Fecal coliform bacteria, and, in particular, E. coli, are members of the coliform bacteria group originating in the intestinal tract of warm-blooded animals and are passed into the environment through feces. The presence of fecal coliform bacteria (E. coli) in drinking water may indicate recent contamination of the drinking water with fecal material.

- **Fecal Coliforms**
 - Reported monthly tests found no fecal coliform bacteria.

- **Total Coliforms**
 - Reported monthly tests found no coliform bacteria.

Distribution Sampling for By-Products of Drinking Water Chlorination (Disinfection)

Unregulated Contaminants (2005)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Concentration Range Found</th>
<th>Average Concentration Found</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibenzo(a)pyrene</td>
<td>1.73 – 1.73</td>
<td>1.73</td>
<td></td>
</tr>
</tbody>
</table>
SAWS Securing New, Future Water Resources

Just a few years ago, San Antonio was totally dependent on day-to-day pumping from the Edwards Aquifer for the city’s water needs. Now, as a result of extensive planning, and funding through the Water Supply Fee, SAWS is working to secure San Antonio’s water future.

The SAWS Water Resource Plan looks toward the next 50 years, taking a leadership role in the protection and development of water supplies for the San Antonio and Bexar County area. The plan is to reduce reliance from the Edwards Aquifer and to develop new and affordable water resources for the future.

Our drinking water meets or exceeds all federal drinking water requirements. This Water Quality Report is a summary about the drinking water San Antonio Water System (SAWS) provides our customers.

The data in this report was prepared from the most recent required tests set by the U.S. Environmental Protection Agency (EPA). Public water systems, like SAWS, are required by law to report every year on the quality and quantity of substances that are in our water. This law – the Safe Drinking Water Act (SDWA) amended by Congress in 1996 – has specific guidelines concerning drinking water quality, as well as the methods and frequency of testing.

The EPA with assistance locally from the Texas Commission on Environmental Quality (TCEQ) administers the SDWA to ensure that tap water is safe to drink by restricting the presence of contaminants in public water systems. In addition, SAWS tests the quality of water daily, and the TCEQ reviews the Edwards and Trinity aquifers as part of its source water assessment.

Our Commitment to You
SAWS is genuinely committed to providing our customers with plentiful and quality drinking water. Historically, SAWS and its predecessors have been rated as a superior water system since 1936.

Your confidence in San Antonio’s water supply is important to us. We hope this information will help you become more knowledgeable about your drinking water.

Where Our Water Comes From
During 2006 – the testing period represented in this report – your SAWS drinking water originated as ground water from the Trinity Aquifer.